51 research outputs found

    A Gaussian-mixed Fuzzy Clustering Model on Valence-Arousal-related fMRI Data-Set

    Get PDF
    Previous medical experiments illustrated that Valence and Arousal were high corresponded to brain response by amygdala and orbital frontal cortex through observation by functional magnetic resonance imaging (fMRI). In this paper, Valence-Arousal related fMRI data-set were acquired from the picture stimuli experiments, and finally the relative Valence -Arousal feature values for a given word that corresponding to a given picture stimuli were calculated. Gaussian bilateral filter and independent components analysis (ICA) based Gaussian component method were applied for image denosing and segmenting; to construct the timing signals of Valence and Arousal from fMRI data-set separately, expectation maximal of Gaussian mixed model was addressed to calculate the histogram, and furthermore, Otsu curve fitting algorithm was introduced to scale the computational complexity; time series based Valence -Arousal related curve were finally generated. In Valence-Arousal space, a fuzzy c-mean method was applied to get typical point that represented the word relative to the picture. Analyzed results showed the effectiveness of the proposed methods by comparing with other algorithms for feature extracting operations on fMRI data-set including power spectrum density (PSD), spline, shape-preserving and cubic fitting methods

    Fuzzy Case-Based Reasoning in Product Style Acquisition Incorporating Valence-Arousal-Based Emotional Cellular Model

    Get PDF
    Emotional cellular (EC), proposed in our previous works, is a kind of semantic cell that contains kernel and shell and the kernel is formalized by a triple- L = <P, d, δ>, where P denotes a typical set of positive examples relative to word-L, d is a pseudodistance measure on emotional two-dimensional space: valence-arousal, and δ is a probability density function on positive real number field. The basic idea of EC model is to assume that the neighborhood radius of each semantic concept is uncertain, and this uncertainty will be measured by one-dimensional density function δ. In this paper, product form features were evaluated by using ECs and to establish the product style database, fuzzy case based reasoning (FCBR) model under a defined similarity measurement based on fuzzy nearest neighbors (FNN) incorporating EC was applied to extract product styles. A mathematical formalized inference system for product style was also proposed, and it also includes uncertainty measurement tool emotional cellular. A case study of style acquisition of mobile phones illustrated the effectiveness of the proposed methodology

    Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors

    Get PDF
    Skin conductivity (i.e., sweat) forms the basis of many physiology-based emotion and stress detection systems. However, such systems typically do not detect the biomarkers present in sweat, and thus do not take advantage of the biological information in the sweat. Likewise, such systems do not detect the volatile organic components (VOC’s) created under stressful conditions. This work presents a review into the current status of human emotional stress biomarkers and proposes the major potential biomarkers for future wearable sensors in affective systems. Emotional stress has been classified as a major contributor in several social problems, related to crime, health, the economy, and indeed quality of life. While blood cortisol tests, electroencephalography and physiological parameter methods are the gold standards for measuring stress; however, they are typically invasive or inconvenient and not suitable for wearable real-time stress monitoring. Alternatively, cortisol in biofluids and VOCs emitted from the skin appear to be practical and useful markers for sensors to detect emotional stress events. This work has identified antistress hormones and cortisol metabolites as the primary stress biomarkers that can be used in future sensors for wearable affective systems

    Effect of Oxide on Surface Tension of Molten Metal

    Get PDF
    Oxides as one of the commonly activating fluxes used in active tungsten inert gas welding (A-TIG welding) can dramatically increase the penetration depth to 2–4 times that of conventional welding. Using the oscillation principle of inviscid fluid, a robust method is developed to measure the average surface tension of molten metal during A-TIG welding for four different oxide activating fluxes of B2O3, TiO2, SiO2, and MgO. The experimental results suggest that the oxygen released from the decomposition of oxides is the dominant factor contributing to the change of the surface tension, which can result in the change of the temperature coefficient from negative to positive and alter the Marangoni convection, leading to the increase in the penetration depth. However, oxygen of small amount or large amount has a negligible effect on the sign change of the temperature coefficient. For oxides of low melting points, the interaction between the electrons outside the arc and the neutral particles (atoms and molecules) formed from the dissolution of the oxides causes the constriction of the arc; for oxides of high melting points, the decrease of the spot area in the anode due to high resistivity of the oxides leads to the constriction of the arc

    Pattern mining approaches used in sensor-based biometric recognition: a review

    Get PDF
    Sensing technologies place significant interest in the use of biometrics for the recognition and assessment of individuals. Pattern mining techniques have established a critical step in the progress of sensor-based biometric systems that are capable of perceiving, recognizing and computing sensor data, being a technology that searches for the high-level information about pattern recognition from low-level sensor readings in order to construct an artificial substitute for human recognition. The design of a successful sensor-based biometric recognition system needs to pay attention to the different issues involved in processing variable data being - acquisition of biometric data from a sensor, data pre-processing, feature extraction, recognition and/or classification, clustering and validation. A significant number of approaches from image processing, pattern identification and machine learning have been used to process sensor data. This paper aims to deliver a state-of-the-art summary and present strategies for utilizing the broadly utilized pattern mining methods in order to identify the challenges as well as future research directions of sensor-based biometric systems

    Texture features based microscopic image classification of liver cellular granuloma using artificial neural networks

    Get PDF
    Automated classification of Schistosoma mansoni granulomatous microscopic images of mice liver using Artificial Intelligence (AI) technologies is a key issue for accurate diagnosis and treatment. In this paper, three grey difference statistics-based features, namely three Gray-Level Co-occurrence Matrix (GLCM) based features and fifteen Gray Gradient Co-occurrence Matrix (GGCM) features were calculated by correlative analysis. Ten features were selected for three-level cellular granuloma classification using a Scaled Conjugate Gradient Back-Propagation Neural Network (SCG-BPNN) in the same performance. A cross-entropy is then calculated to evaluate the proposed Sigmoid input and the ten-hidden layer network. The results depicted that SCG-BPNN with texture features performs high recognition rate compared to using morphological features, such as shape, size, contour, thickness and other geometry-based features for the classification. The proposed method also has a high accuracy rate of 87.2% compared to the Back-Propagation Neural Network (BPNN), Back-Propagation Hopfield Neural Network (BPHNN) and Convolutional Neural Network (CNN)

    Wireless capsule gastrointestinal endoscopy: direction of arrival estimation based localization survey

    Get PDF
    One of the significant challenges in Capsule Endoscopy (CE) is to precisely determine the pathologies location. The localization process is primarily estimated using the received signal strength from sensors in the capsule system through its movement in the gastrointestinal (GI) tract. Consequently, the wireless capsule endoscope (WCE) system requires improvement to handle the lack of the capsule instantaneous localization information and to solve the relatively low transmission data rate challenges. Furthermore, the association between the capsule’s transmitter position, capsule location, signal reduction and the capsule direction should be assessed. These measurements deliver significant information for the instantaneous capsule localization systems based on TOA (time of arrival) approach, PDOA (phase difference of arrival), RSS (received signal strength), electromagnetic, DOA (direction of arrival) and video tracking approaches are developed to locate the WCE precisely. The current article introduces the acquisition concept of the GI medical images using the endoscopy with a comprehensive description of the endoscopy system components. Capsule localization and tracking are considered to be the most important features of the WCE system, thus the current article emphasizes the most common localization systems generally, highlighting the DOA-based localization systems and discusses the required significant research challenges to be addressed

    Analysis and Modeling of the Growth of Intermetallic Compounds in Aluminum–Steel Joints

    Get PDF
    In this work, we experimentally and numerically studied the microstructures and growth of intermetallic compounds (IMCs) formed in Al–Fe (aluminum–steel) joints welded by a pulsed double electrode gas metal arc welding (DE-GMAW)-brazing method. The IMCs consist of Fe2Al5 and FeAl3, with Fe2Al5 being the main compound in the joints. The thickness of an IMC layer increases with an increase of the welding current (heat input) into the base metal. EBSD measurement suggests that the preferred crystal orientation of the Fe2Al5 IMC likely provides the necessary path for Al atoms to migrate through the IMC layer for further growth of the Fe2Al5 IMC layer toward the steel substrate. The Monte Carlo method was used to simulate growth of the IMCs in the joints. Numerical results are in good accord with the experimental results, suggesting that Fe2Al5 IMC is first formed in the initial brazing interface between liquid Al and steel substrate, and then the interface between the liquid Al and steel substrate evolves into two new interfaces: one is an interface between the Fe2Al5IMC layer and the steel substrate, and the other is an interface between the Fe2Al5 IMC layer and liquid Al. During growth of the Fe2Al5 IMC, FeAl3 IMC forms in the interface between the Fe2Al5 IMC layer and the Al and then grows into the Al. The thickness of the Fe2Al5 layer increases nonlinearly with an increase in the growth time

    A distance regularized level-set evolution model based MRI dataset segmentation of brain’s caudate nucleus

    Get PDF
    The caudate nucleus of the brain is highly correlated to the emotional decision-making of pessimism, which is an important process for improving the understanding and treatment of depression; and the segmentation of the caudate nucleus is the most basic step in the process of analysis and research concerning this region. In this paper, Level Set Method (LSM) is applied for caudate nucleus segmentation. Firstly, Distance Regularized Level Set Evolution (DRLSE), Region-Scalable Fitting (RSF) and Local Image Fitting (LIF) models are proposed for segmentation of the caudate nucleus of Magnetic Resonance Imaging (MRI) images of the brain, and the segmentation results are compared by using selected evaluation indices. The average Dice Similarity Coefficient (DSC) values of the proposed three methods all exceed 85%, and the average Jaccard Similarity (JS) values are over 77%, respectively. The results indicate that all these three models can have good segmentation results for medical images with intensity inhomogeneity and meet the general segmentation requirements, while the proposed DRLSE model performs better in segmentation
    • …
    corecore